If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-71+70=0
We add all the numbers together, and all the variables
15x^2-1=0
a = 15; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·15·(-1)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*15}=\frac{0-2\sqrt{15}}{30} =-\frac{2\sqrt{15}}{30} =-\frac{\sqrt{15}}{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*15}=\frac{0+2\sqrt{15}}{30} =\frac{2\sqrt{15}}{30} =\frac{\sqrt{15}}{15} $
| x/100*30=1.2 | | x-19=11-4x | | 6-6x-3=-54+4x-13 | | x-7.8=4.1 | | -8+20x=-15 | | 6-6x-3=-54+4x-13= | | 9p+4=8p+11 | | 4x+2x+6=5x-2x9 | | 3+5x-12=2(x+3)+15= | | (1/x)-(1/5x)+(1/x+1)-(5/2x)=0 | | (1/x)-(1/5x)+(1/x+1)=(5/2x) | | 3x-6=123 | | (1/y)-(1/5y)+(1/y+1)=(5/2y | | 3+5x-12=2(x+3)+15 | | 8x+3×-9x-5=7 | | (4p-7)(p+6)=0 | | x-(5-9x)=5(2x+1)-10 | | 6t-1=7 | | 20-2x=90 | | 15-7+x=7+5-4 | | (2/y+1)-(3/1-y)=5/y | | 6x-10+32x+56=0 | | 8(x)-6(x)=-18 | | 71-6x=14 | | X+2/3-1/2x=1/6x-1/8 | | 2y+3y=160 | | 286/5.5=468/y | | 3-(x/8)=(5x/2)-(2/3)(x-4)+5 | | (3x+1)^2-2=0 | | -5(3t-4)+3t=7t-4 | | x=6000+0.1(x) | | 5/6x-1/4x=7 |